

General Description

The αRD1567 is low power CMOS dual transceiver designed to meet the requirements of MIL-STD-1553/1760 specifications.

The transmitter section of each channel takes complimentary CMOS/TTL digital input data and converts it to bi-phase Manchester encoded 1553 signals suitable for driving the bus isolation transformer. Separate transmitter inhibition control signals are provided for each transmitter.

The receiver section of the each channel converts the 1553 bus bi-phase data to complimentary CMOS/TTL data suitable for inputting to a Manchester decoder. Each receiver has a separate enable input which can be used to force the output of the receiver to a logic 0. To minimize the package size for this function, the transmitter outputs are internally connected to the receiver inputs, so that only two pins are required for connection to each coupling transformer.

The αRD1567 have 5000V HBM built-in ESD protection.

Ordering information

Table 1.

Part	Temp. range, °C	Package	Package drawing	Burn-In case temp, °C	Burn-In time, hrs
αRD1567	–55 to +125	24-lead CFP	Figure 4	+125	240

Pin Function Description

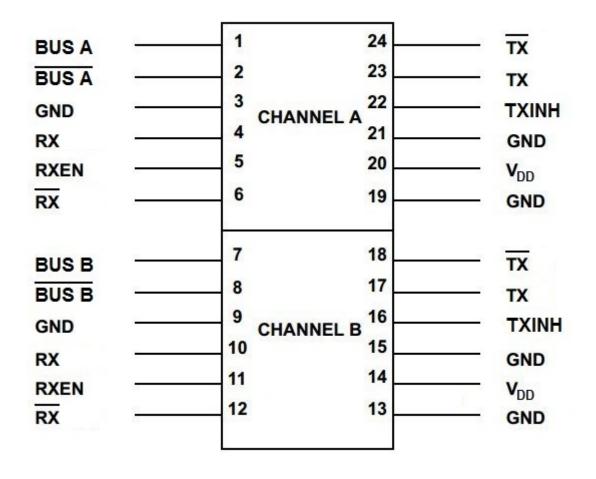


Table 2.

Description		Pin №		
Description	Mnemonic	Channel A	Channel B	
MIL-STD-1533 bus positive signal	BUS	1	7	
MIL-STD-1533 bus negative signal	BUS	2	8	
Ground	GND	3, 19, 21	9, 13, 15	
Receiver output	RX	4	10	
Receiver enable	RXEN	5	11	
Receiver output inv	RX	6	12	
Pover Input	V _{DD}	20	14	
Transmitter inhibition	TXINH	22	16	
Transmitter input	ТХ	23	17	
Transmitter input inv	TX	24	18	

αRD1567 Operating conditions and absolute maximum ratings

					Table 3.
Characteristics, units	Symbol	Operating conditions		Absolute maximum ratings	
,	, , , , , , , , , , , , , , , , , , ,	min	max	min	max
Supply Voltage, V	V _{DD}	4,5	5,5	_	7
Logic Input voltage (high), V	UIH	2	V _{DD}	-0,3	V _{DD}
Logic Input voltage (low), V	Uı∟	0	0,8	-0,3	V _{DD}
Receiver differential voltage, V	UIR	_	9	_	10
Peak output current, A	IOUT	_	0,55	_	1
Power dissipation, W	Ртот	_	0,95		1,1
Simultaneous transmission by both channels is not allowed. Stresses above absolute					
maximum ratings or outside recommended operating conditions may cause					
permanent damage to the device.					

Radiation Features

Total Ionizing Dose (TID): 50 krads (Si).

Dose rate = 3.6 - 36 krads (Si)/h

SEE information:

No SEL was observed with LET of 62.5 MeV, Xenon heavy ion.

No SEFI was observed with LET of 62.5 MeV, Xenon heavy ion.

Single event transient (SET):

 σ_{sat} <1.2e-5 cm² at LET= 62.5 MeV·cm²/mg, LET_{th}> 20.4 MeV·cm²/mg.

αRD1567

Electrical characteristics within operating temperature range

Table 4.

Parameter, units	Symbol	Condition	min	typ	max	
Input Current uA	I _{IH}	$V_{DD} = 5,5V V_{IH} = V_{DD}$	_	0,04	10	
Input Current, µA	IIL	$V_{DD} = 5,5V, V_{IL} = 0$	-10	0,04	0	
	Icc	V _{DD} = 5,5V, no transmission	_	10	24	
Supply Current, mA	I _{CC1}	V _{DD} = 5,5V, 50% duty cycle	_	250	352	
	Icc2	V _{DD} = 5,5V, 100% duty cycle	_	450	600	
		Receiver section				
Output Voltage HI, V	Uон	V _{DD} = 4,5V, I _{OH} = -0,4 mA	2,7	4,3	_	
Output Voltage LO, V	U _{OL}	V _{DD} = 4,5V, I _{OH} = 1 mA	_	0,2	0,4	
Threshold Voltage, V	V _{TH}	V _{DD} = 5V, 1 MHz sine wave	0,28	0,75	1,2	
Input Differential Resistance, kOhm	Rı	V _{DD} = 4,5V	20	63	_	
Receive Delay, ns	t _R	$V_{DD} = 4,5V$	_	250	480	
Receiver Enable Delay, ns		V _{DD} = 4,5V	_	25	50	
Transmitter section						
Output Voltage, V		$V_{DD} = 4,55,5V,$ R _L = 35 Ohm, fig. 1	6	7,0	9	
Oulput Voltage, V	U _{O pp}	V_{DD} = 4,55,5V, R _L = 70 Ohm, fig. 2	18	20,5	27	
Transmitter Noise, mV	U_{Npp}	V _{DD} = 4,55,5V	—	0,3	10	
Output Dynamic	TT	$V_{DD} = 4,55,5V,$ R _L = 35 Ohm, fig. 1	-90	±50	90	
Voltage Offset, mV	U _{O DIN}	V _{DD} = 4,5…5,5V, R _L = 70 Ohm, fig. 2	-270	±150	270	
Output Differential Resistance, kOhm	Ro	V _{DD} = 4,5V, no transmission	10	173	_	
Transmission Delay, ns	ansmission Delay, ns t_T $V_{DD} = 4,5V$		_	130	200	
Transmitter Inhibition	t _{TLH INH}	$V_{DD} = 4,5V$	—	70	120	
Delay, ns	t _{THL} INH	$V_{DD} = 4,5V$	_	130	190	
Rise/Fall Time, ns	t _F	$V_{DD} = 4,55,5V$	100	170	300	

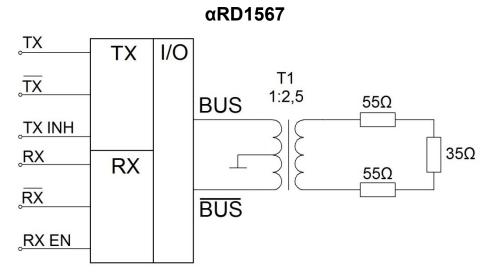


Figure 1 – Test circuit, direct coupling to MIL-STD-1553 BUS Ω

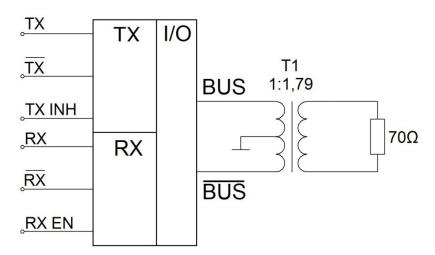
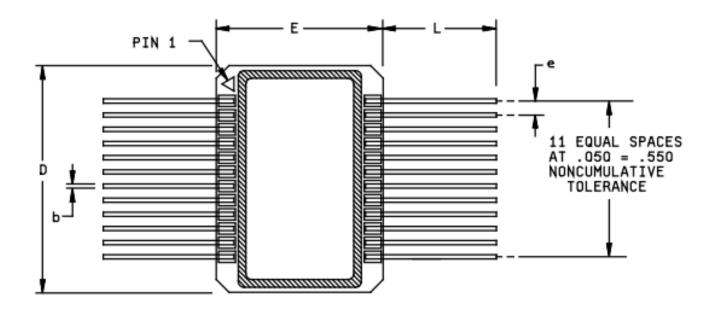
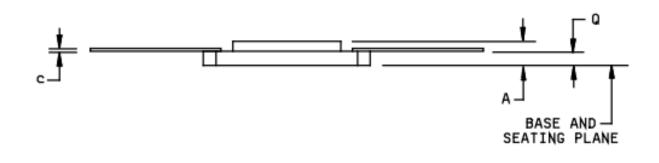


Figure 2 – Test circuit, transformer coupling to MIL-STD-1553 BUS

Recommended thermal protection


Package should be mounted to or contact a heat removal rail located in the printed circuit board. To insure proper heat transfer between the package and the heat removal rail, use a thermally conductive material between the package and the heat removal rail.


Layout

To minimize Output Dynamic Voltage Offset, layout differences between BUS and \overline{BUS} lines and between TX and \overline{TX} lines should be minimal.

Physical Dimensions

Dimension	Inches			
Dimension	Min	Max		
Α		.095		
b		.018		
С	.007	.013		
D		.810		
E	.580	.600		
е	.045	.055		
L	.400			
Q	.060	.080		

Figure 4 – CFP-24 package dimensions

All RD ALFA Microelectronics semiconductor products are manufactured, assembled and tested under ISO9001 quality systems certification.

RD ALFA Microelectronics products are sold by description only. RD ALFA Microelectronics reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by RD ALFA Microelectronics is believed to be accurate and reliable. However, no responsibility is assumed by RD ALFA Microelectronics or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RD ALFA Microelectronics or its subsidiaries.

For information regarding RD ALFA Microelectronics and its products, see web site http://www.rdalfa.eu

